Metamath Proof Explorer


Theorem nexfal

Description: There does not exist a set such that F. is true. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion nexfal
|- -. E. x F.

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 nex
 |-  -. E. x F.