Metamath Proof Explorer


Theorem nff1o

Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004)

Ref Expression
Hypotheses nff1o.1
|- F/_ x F
nff1o.2
|- F/_ x A
nff1o.3
|- F/_ x B
Assertion nff1o
|- F/ x F : A -1-1-onto-> B

Proof

Step Hyp Ref Expression
1 nff1o.1
 |-  F/_ x F
2 nff1o.2
 |-  F/_ x A
3 nff1o.3
 |-  F/_ x B
4 df-f1o
 |-  ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) )
5 1 2 3 nff1
 |-  F/ x F : A -1-1-> B
6 1 2 3 nffo
 |-  F/ x F : A -onto-> B
7 5 6 nfan
 |-  F/ x ( F : A -1-1-> B /\ F : A -onto-> B )
8 4 7 nfxfr
 |-  F/ x F : A -1-1-onto-> B