Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ngpxms | |- ( G e. NrmGrp -> G e. *MetSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms | |- ( G e. NrmGrp -> G e. MetSp ) |
|
2 | msxms | |- ( G e. MetSp -> G e. *MetSp ) |
|
3 | 1 2 | syl | |- ( G e. NrmGrp -> G e. *MetSp ) |