Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nimnbi2.1 | |- -. ( ps -> ph ) | |
| Assertion | nimnbi2 | |- -. ( ph <-> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nimnbi2.1 | |- -. ( ps -> ph ) | |
| 2 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) | |
| 3 | 1 2 | mto | |- -. ( ph <-> ps ) |