Metamath Proof Explorer


Theorem nltled

Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
nltled.1
|- ( ph -> -. B < A )
Assertion nltled
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 nltled.1
 |-  ( ph -> -. B < A )
4 1 2 lenltd
 |-  ( ph -> ( A <_ B <-> -. B < A ) )
5 3 4 mpbird
 |-  ( ph -> A <_ B )