Description: A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nmhmghm | |- ( F e. ( S NMHom T ) -> F e. ( S GrpHom T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmhmnghm | |- ( F e. ( S NMHom T ) -> F e. ( S NGHom T ) ) |
|
2 | nghmghm | |- ( F e. ( S NGHom T ) -> F e. ( S GrpHom T ) ) |
|
3 | 1 2 | syl | |- ( F e. ( S NMHom T ) -> F e. ( S GrpHom T ) ) |