Description: A normed module homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmhmghm | |- ( F e. ( S NMHom T ) -> F e. ( S GrpHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmhmnghm | |- ( F e. ( S NMHom T ) -> F e. ( S NGHom T ) ) |
|
| 2 | nghmghm | |- ( F e. ( S NGHom T ) -> F e. ( S GrpHom T ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( S NMHom T ) -> F e. ( S GrpHom T ) ) |