Description: A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmhmlmhm | |- ( F e. ( S NMHom T ) -> F e. ( S LMHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnmhm | |- ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
|
| 2 | 1 | simprbi | |- ( F e. ( S NMHom T ) -> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) |
| 3 | 2 | simpld | |- ( F e. ( S NMHom T ) -> F e. ( S LMHom T ) ) |