| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0gsumfz.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | nn0gsumfz.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | nn0gsumfz.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | nn0gsumfz.f |  |-  ( ph -> F e. ( B ^m NN0 ) ) | 
						
							| 5 |  | nn0gsumfz.y |  |-  ( ph -> F finSupp .0. ) | 
						
							| 6 | 1 2 3 4 5 | nn0gsumfz |  |-  ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) | 
						
							| 7 |  | simp3 |  |-  ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> ( G gsum F ) = ( G gsum f ) ) | 
						
							| 8 | 7 | reximi |  |-  ( E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) | 
						
							| 9 | 8 | reximi |  |-  ( E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) |