Metamath Proof Explorer


Theorem nnexALT

Description: Alternate proof of nnex , more direct, that makes use of ax-rep . (Contributed by Mario Carneiro, 3-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnexALT
|- NN e. _V

Proof

Step Hyp Ref Expression
1 df-nn
 |-  NN = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om )
2 rdgfun
 |-  Fun rec ( ( x e. _V |-> ( x + 1 ) ) , 1 )
3 omex
 |-  _om e. _V
4 funimaexg
 |-  ( ( Fun rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) /\ _om e. _V ) -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) e. _V )
5 2 3 4 mp2an
 |-  ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) e. _V
6 1 5 eqeltri
 |-  NN e. _V