Description: A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm1hex | |- ( E. x e. ~H x =/= 0h <-> E. y e. ~H ( normh ` y ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helsh | |- ~H e. SH |
|
| 2 | 1 | norm1exi | |- ( E. x e. ~H x =/= 0h <-> E. y e. ~H ( normh ` y ) = 1 ) |