Metamath Proof Explorer


Theorem nvelim

Description: If a class is the universal class it doesn't belong to any class, generalization of nvel . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion nvelim
|- ( A = _V -> -. A e. B )

Proof

Step Hyp Ref Expression
1 nvel
 |-  -. _V e. B
2 eleq1
 |-  ( _V = A -> ( _V e. B <-> A e. B ) )
3 2 eqcoms
 |-  ( A = _V -> ( _V e. B <-> A e. B ) )
4 1 3 mtbii
 |-  ( A = _V -> -. A e. B )