Metamath Proof Explorer


Theorem oaord3

Description: When the same ordinal is added on the left, ordering of the sums is equivalent to the ordering of the ordinals on the right. Theorem 3.7 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaord3
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) )

Proof

Step Hyp Ref Expression
1 oaord
 |-  ( ( B e. On /\ C e. On /\ A e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) )
2 1 3comr
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) )