Metamath Proof Explorer


Theorem omlop

Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion omlop
|- ( K e. OML -> K e. OP )

Proof

Step Hyp Ref Expression
1 omlol
 |-  ( K e. OML -> K e. OL )
2 olop
 |-  ( K e. OL -> K e. OP )
3 1 2 syl
 |-  ( K e. OML -> K e. OP )