Description: If one ordinal is less than another, then the successor of the first is less than or equal to the second. Lemma 1.13 of Schloeder p. 2. See ordsucss . (Contributed by RP, 16-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsucss | |- ( A e. On -> ( B e. A -> suc B C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( A e. On -> Ord A ) |
|
2 | ordsucss | |- ( Ord A -> ( B e. A -> suc B C_ A ) ) |
|
3 | 1 2 | syl | |- ( A e. On -> ( B e. A -> suc B C_ A ) ) |