Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019) (Proof shortened by Thierry Arnoux, 18-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opabf.1 | |- -. ph |
|
Assertion | opabf | |- { <. x , y >. | ph } = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabf.1 | |- -. ph |
|
2 | 1 | gen2 | |- A. x A. y -. ph |
3 | opab0 | |- ( { <. x , y >. | ph } = (/) <-> A. x A. y -. ph ) |
|
4 | 2 3 | mpbir | |- { <. x , y >. | ph } = (/) |