Metamath Proof Explorer


Theorem opabf

Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019) (Proof shortened by Thierry Arnoux, 18-Feb-2022)

Ref Expression
Hypothesis opabf.1
|- -. ph
Assertion opabf
|- { <. x , y >. | ph } = (/)

Proof

Step Hyp Ref Expression
1 opabf.1
 |-  -. ph
2 1 gen2
 |-  A. x A. y -. ph
3 opab0
 |-  ( { <. x , y >. | ph } = (/) <-> A. x A. y -. ph )
4 2 3 mpbir
 |-  { <. x , y >. | ph } = (/)