Description: An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| Assertion | oppccat | |- ( C e. Cat -> O e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| 2 | 1 | oppccatid | |- ( C e. Cat -> ( O e. Cat /\ ( Id ` O ) = ( Id ` C ) ) ) |
| 3 | 2 | simpld | |- ( C e. Cat -> O e. Cat ) |