Description: Equality of the first members of equal ordered pairs. Closed form of opth1 . (Contributed by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opth1g | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. -> A = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
|
| 2 | simpl | |- ( ( A = C /\ B = D ) -> A = C ) |
|
| 3 | 1 2 | biimtrdi | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. -> A = C ) ) |