Metamath Proof Explorer


Theorem orbi2d

Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis bid.1
|- ( ph -> ( ps <-> ch ) )
Assertion orbi2d
|- ( ph -> ( ( th \/ ps ) <-> ( th \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 bid.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 imbi2d
 |-  ( ph -> ( ( -. th -> ps ) <-> ( -. th -> ch ) ) )
3 df-or
 |-  ( ( th \/ ps ) <-> ( -. th -> ps ) )
4 df-or
 |-  ( ( th \/ ch ) <-> ( -. th -> ch ) )
5 2 3 4 3bitr4g
 |-  ( ph -> ( ( th \/ ps ) <-> ( th \/ ch ) ) )