Step |
Hyp |
Ref |
Expression |
1 |
|
elong |
|- ( A e. _V -> ( A e. On <-> Ord A ) ) |
2 |
|
suceloni |
|- ( A e. On -> suc A e. On ) |
3 |
|
eloni |
|- ( suc A e. On -> Ord suc A ) |
4 |
2 3
|
syl |
|- ( A e. On -> Ord suc A ) |
5 |
1 4
|
syl6bir |
|- ( A e. _V -> ( Ord A -> Ord suc A ) ) |
6 |
|
sucidg |
|- ( A e. _V -> A e. suc A ) |
7 |
|
ordelord |
|- ( ( Ord suc A /\ A e. suc A ) -> Ord A ) |
8 |
7
|
ex |
|- ( Ord suc A -> ( A e. suc A -> Ord A ) ) |
9 |
6 8
|
syl5com |
|- ( A e. _V -> ( Ord suc A -> Ord A ) ) |
10 |
5 9
|
impbid |
|- ( A e. _V -> ( Ord A <-> Ord suc A ) ) |
11 |
|
sucprc |
|- ( -. A e. _V -> suc A = A ) |
12 |
11
|
eqcomd |
|- ( -. A e. _V -> A = suc A ) |
13 |
|
ordeq |
|- ( A = suc A -> ( Ord A <-> Ord suc A ) ) |
14 |
12 13
|
syl |
|- ( -. A e. _V -> ( Ord A <-> Ord suc A ) ) |
15 |
10 14
|
pm2.61i |
|- ( Ord A <-> Ord suc A ) |