Metamath Proof Explorer


Theorem ori

Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994)

Ref Expression
Hypothesis ori.1
|- ( ph \/ ps )
Assertion ori
|- ( -. ph -> ps )

Proof

Step Hyp Ref Expression
1 ori.1
 |-  ( ph \/ ps )
2 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
3 1 2 mpbi
 |-  ( -. ph -> ps )