Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | oveq2 | |- ( A = B -> ( C F A ) = ( C F B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
|
2 | 1 | fveq2d | |- ( A = B -> ( F ` <. C , A >. ) = ( F ` <. C , B >. ) ) |
3 | df-ov | |- ( C F A ) = ( F ` <. C , A >. ) |
|
4 | df-ov | |- ( C F B ) = ( F ` <. C , B >. ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( C F A ) = ( C F B ) ) |