| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							brtpos | 
							 |-  ( y e. _V -> ( <. A , B >. tpos F y <-> <. B , A >. F y ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							elv | 
							 |-  ( <. A , B >. tpos F y <-> <. B , A >. F y )  | 
						
						
							| 3 | 
							
								2
							 | 
							iotabii | 
							 |-  ( iota y <. A , B >. tpos F y ) = ( iota y <. B , A >. F y )  | 
						
						
							| 4 | 
							
								
							 | 
							df-fv | 
							 |-  ( tpos F ` <. A , B >. ) = ( iota y <. A , B >. tpos F y )  | 
						
						
							| 5 | 
							
								
							 | 
							df-fv | 
							 |-  ( F ` <. B , A >. ) = ( iota y <. B , A >. F y )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							3eqtr4i | 
							 |-  ( tpos F ` <. A , B >. ) = ( F ` <. B , A >. )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ov | 
							 |-  ( A tpos F B ) = ( tpos F ` <. A , B >. )  | 
						
						
							| 8 | 
							
								
							 | 
							df-ov | 
							 |-  ( B F A ) = ( F ` <. B , A >. )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							3eqtr4i | 
							 |-  ( A tpos F B ) = ( B F A )  |