Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993) (Proof shortened by Wolf Lammen, 25-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pclem6 | |- ( ( ph <-> ( ps /\ -. ph ) ) -> -. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar | |- ( ps -> ( -. ph <-> ( ps /\ -. ph ) ) ) |
|
2 | nbbn | |- ( ( -. ph <-> ( ps /\ -. ph ) ) <-> -. ( ph <-> ( ps /\ -. ph ) ) ) |
|
3 | 1 2 | sylib | |- ( ps -> -. ( ph <-> ( ps /\ -. ph ) ) ) |
4 | 3 | con2i | |- ( ( ph <-> ( ps /\ -. ph ) ) -> -. ps ) |