Metamath Proof Explorer


Theorem peano2

Description: The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of TakeutiZaring p. 42. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion peano2
|- ( A e. _om -> suc A e. _om )

Proof

Step Hyp Ref Expression
1 peano2b
 |-  ( A e. _om <-> suc A e. _om )
2 1 biimpi
 |-  ( A e. _om -> suc A e. _om )