Description: A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
| ply1bascl.b | |- B = ( Base ` P ) |
||
| Assertion | ply1bascl2 | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1bascl.b | |- B = ( Base ` P ) |
|
| 3 | 1 2 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 4 | 3 | eleq2i | |- ( F e. B <-> F e. ( Base ` ( 1o mPoly R ) ) ) |
| 5 | 4 | biimpi | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |