Description: The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1domn.p | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1idom | |- ( R e. IDomn -> P e. IDomn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1domn.p | |- P = ( Poly1 ` R ) |
|
| 2 | 1 | ply1crng | |- ( R e. CRing -> P e. CRing ) |
| 3 | 1 | ply1domn | |- ( R e. Domn -> P e. Domn ) |
| 4 | 2 3 | anim12i | |- ( ( R e. CRing /\ R e. Domn ) -> ( P e. CRing /\ P e. Domn ) ) |
| 5 | isidom | |- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
|
| 6 | isidom | |- ( P e. IDomn <-> ( P e. CRing /\ P e. Domn ) ) |
|
| 7 | 4 5 6 | 3imtr4i | |- ( R e. IDomn -> P e. IDomn ) |