Metamath Proof Explorer


Theorem pm10.53

Description: Theorem *10.53 in WhiteheadRussell p. 155. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.53
|- ( -. E. x ph -> A. x ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 pm2.21
 |-  ( -. E. x ph -> ( E. x ph -> A. x ps ) )
2 19.38
 |-  ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) )
3 1 2 syl
 |-  ( -. E. x ph -> A. x ( ph -> ps ) )