Metamath Proof Explorer


Theorem pm2.41

Description: Theorem *2.41 of WhiteheadRussell p. 106. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.41
|- ( ( ps \/ ( ph \/ ps ) ) -> ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 olc
 |-  ( ps -> ( ph \/ ps ) )
2 id
 |-  ( ( ph \/ ps ) -> ( ph \/ ps ) )
3 1 2 jaoi
 |-  ( ( ps \/ ( ph \/ ps ) ) -> ( ph \/ ps ) )