Description: Theorem *4.15 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 18-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.15 | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2b | |- ( ( ( ps /\ ch ) -> -. ph ) <-> ( ph -> -. ( ps /\ ch ) ) ) |
|
2 | nan | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) |
|
3 | 1 2 | bitr2i | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) ) |