Metamath Proof Explorer


Theorem pm4.15

Description: Theorem *4.15 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 18-Nov-2012)

Ref Expression
Assertion pm4.15
|- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) )

Proof

Step Hyp Ref Expression
1 con2b
 |-  ( ( ( ps /\ ch ) -> -. ph ) <-> ( ph -> -. ( ps /\ ch ) ) )
2 nan
 |-  ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) )
3 1 2 bitr2i
 |-  ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) )