Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996) (Proof shortened by Wolf Lammen, 19-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm5.21ni.1 | |- ( ph -> ps ) |
|
pm5.21ni.2 | |- ( ch -> ps ) |
||
Assertion | pm5.21ni | |- ( -. ps -> ( ph <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | |- ( ph -> ps ) |
|
2 | pm5.21ni.2 | |- ( ch -> ps ) |
|
3 | 1 | con3i | |- ( -. ps -> -. ph ) |
4 | 2 | con3i | |- ( -. ps -> -. ch ) |
5 | 3 4 | 2falsed | |- ( -. ps -> ( ph <-> ch ) ) |