Metamath Proof Explorer


Theorem pm5.32i

Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypothesis pm5.32i.1
|- ( ph -> ( ps <-> ch ) )
Assertion pm5.32i
|- ( ( ph /\ ps ) <-> ( ph /\ ch ) )

Proof

Step Hyp Ref Expression
1 pm5.32i.1
 |-  ( ph -> ( ps <-> ch ) )
2 pm5.32
 |-  ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) )
3 1 2 mpbi
 |-  ( ( ph /\ ps ) <-> ( ph /\ ch ) )