| Step |
Hyp |
Ref |
Expression |
| 1 |
|
polid.1 |
|- A e. ~H |
| 2 |
|
polid.2 |
|- B e. ~H |
| 3 |
1 2 2 1
|
polid2i |
|- ( A .ih B ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 4 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
| 5 |
4
|
normsqi |
|- ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) |
| 6 |
1 2
|
hvsubcli |
|- ( A -h B ) e. ~H |
| 7 |
6
|
normsqi |
|- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) |
| 8 |
5 7
|
oveq12i |
|- ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) |
| 9 |
|
ax-icn |
|- _i e. CC |
| 10 |
9 2
|
hvmulcli |
|- ( _i .h B ) e. ~H |
| 11 |
1 10
|
hvaddcli |
|- ( A +h ( _i .h B ) ) e. ~H |
| 12 |
11
|
normsqi |
|- ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) = ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) |
| 13 |
1 10
|
hvsubcli |
|- ( A -h ( _i .h B ) ) e. ~H |
| 14 |
13
|
normsqi |
|- ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) = ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) |
| 15 |
12 14
|
oveq12i |
|- ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) |
| 16 |
15
|
oveq2i |
|- ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) |
| 17 |
8 16
|
oveq12i |
|- ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) |
| 18 |
17
|
oveq1i |
|- ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 19 |
3 18
|
eqtr4i |
|- ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) |