Metamath Proof Explorer


Theorem preex

Description: The successor-predecessor exists. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion preex
|- pre N e. _V

Proof

Step Hyp Ref Expression
1 df-pre
 |-  pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) )
2 iotaex
 |-  ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) e. _V
3 1 2 eqeltri
 |-  pre N e. _V