Metamath Proof Explorer


Theorem psrel

Description: A poset is a relation. (Contributed by NM, 12-May-2008)

Ref Expression
Assertion psrel
|- ( A e. PosetRel -> Rel A )

Proof

Step Hyp Ref Expression
1 isps
 |-  ( A e. PosetRel -> ( A e. PosetRel <-> ( Rel A /\ ( A o. A ) C_ A /\ ( A i^i `' A ) = ( _I |` U. U. A ) ) ) )
2 1 ibi
 |-  ( A e. PosetRel -> ( Rel A /\ ( A o. A ) C_ A /\ ( A i^i `' A ) = ( _I |` U. U. A ) ) )
3 2 simp1d
 |-  ( A e. PosetRel -> Rel A )