Description: A poset is a relation. (Contributed by NM, 12-May-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | psrel | |- ( A e. PosetRel -> Rel A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps | |- ( A e. PosetRel -> ( A e. PosetRel <-> ( Rel A /\ ( A o. A ) C_ A /\ ( A i^i `' A ) = ( _I |` U. U. A ) ) ) ) |
|
2 | 1 | ibi | |- ( A e. PosetRel -> ( Rel A /\ ( A o. A ) C_ A /\ ( A i^i `' A ) = ( _I |` U. U. A ) ) ) |
3 | 2 | simp1d | |- ( A e. PosetRel -> Rel A ) |