Metamath Proof Explorer


Theorem pwscrng

Description: A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypothesis pwscrng.y
|- Y = ( R ^s I )
Assertion pwscrng
|- ( ( R e. CRing /\ I e. V ) -> Y e. CRing )

Proof

Step Hyp Ref Expression
1 pwscrng.y
 |-  Y = ( R ^s I )
2 eqid
 |-  ( Scalar ` R ) = ( Scalar ` R )
3 1 2 pwsval
 |-  ( ( R e. CRing /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) )
4 eqid
 |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) )
5 simpr
 |-  ( ( R e. CRing /\ I e. V ) -> I e. V )
6 fvexd
 |-  ( ( R e. CRing /\ I e. V ) -> ( Scalar ` R ) e. _V )
7 fconst6g
 |-  ( R e. CRing -> ( I X. { R } ) : I --> CRing )
8 7 adantr
 |-  ( ( R e. CRing /\ I e. V ) -> ( I X. { R } ) : I --> CRing )
9 4 5 6 8 prdscrngd
 |-  ( ( R e. CRing /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. CRing )
10 3 9 eqeltrd
 |-  ( ( R e. CRing /\ I e. V ) -> Y e. CRing )