Metamath Proof Explorer


Theorem pwsgrp

Description: A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwsgrp.y
|- Y = ( R ^s I )
Assertion pwsgrp
|- ( ( R e. Grp /\ I e. V ) -> Y e. Grp )

Proof

Step Hyp Ref Expression
1 pwsgrp.y
 |-  Y = ( R ^s I )
2 eqid
 |-  ( Scalar ` R ) = ( Scalar ` R )
3 1 2 pwsval
 |-  ( ( R e. Grp /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) )
4 eqid
 |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) )
5 simpr
 |-  ( ( R e. Grp /\ I e. V ) -> I e. V )
6 fvexd
 |-  ( ( R e. Grp /\ I e. V ) -> ( Scalar ` R ) e. _V )
7 fconst6g
 |-  ( R e. Grp -> ( I X. { R } ) : I --> Grp )
8 7 adantr
 |-  ( ( R e. Grp /\ I e. V ) -> ( I X. { R } ) : I --> Grp )
9 4 5 6 8 prdsgrpd
 |-  ( ( R e. Grp /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. Grp )
10 3 9 eqeltrd
 |-  ( ( R e. Grp /\ I e. V ) -> Y e. Grp )