Metamath Proof Explorer


Theorem pwstps

Description: A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis pwstps.y
|- Y = ( R ^s I )
Assertion pwstps
|- ( ( R e. TopSp /\ I e. V ) -> Y e. TopSp )

Proof

Step Hyp Ref Expression
1 pwstps.y
 |-  Y = ( R ^s I )
2 eqid
 |-  ( Scalar ` R ) = ( Scalar ` R )
3 1 2 pwsval
 |-  ( ( R e. TopSp /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) )
4 eqid
 |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) )
5 fvexd
 |-  ( ( R e. TopSp /\ I e. V ) -> ( Scalar ` R ) e. _V )
6 simpr
 |-  ( ( R e. TopSp /\ I e. V ) -> I e. V )
7 fconst6g
 |-  ( R e. TopSp -> ( I X. { R } ) : I --> TopSp )
8 7 adantr
 |-  ( ( R e. TopSp /\ I e. V ) -> ( I X. { R } ) : I --> TopSp )
9 4 5 6 8 prdstps
 |-  ( ( R e. TopSp /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. TopSp )
10 3 9 eqeltrd
 |-  ( ( R e. TopSp /\ I e. V ) -> Y e. TopSp )