Description: Trivial right angle. Theorem 8.8 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | israg.p | |- P = ( Base ` G ) |
|
| israg.d | |- .- = ( dist ` G ) |
||
| israg.i | |- I = ( Itv ` G ) |
||
| israg.l | |- L = ( LineG ` G ) |
||
| israg.s | |- S = ( pInvG ` G ) |
||
| israg.g | |- ( ph -> G e. TarskiG ) |
||
| israg.a | |- ( ph -> A e. P ) |
||
| israg.b | |- ( ph -> B e. P ) |
||
| israg.c | |- ( ph -> C e. P ) |
||
| ragtriva.1 | |- ( ph -> <" A B A "> e. ( raG ` G ) ) |
||
| Assertion | ragtriva | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | israg.p | |- P = ( Base ` G ) |
|
| 2 | israg.d | |- .- = ( dist ` G ) |
|
| 3 | israg.i | |- I = ( Itv ` G ) |
|
| 4 | israg.l | |- L = ( LineG ` G ) |
|
| 5 | israg.s | |- S = ( pInvG ` G ) |
|
| 6 | israg.g | |- ( ph -> G e. TarskiG ) |
|
| 7 | israg.a | |- ( ph -> A e. P ) |
|
| 8 | israg.b | |- ( ph -> B e. P ) |
|
| 9 | israg.c | |- ( ph -> C e. P ) |
|
| 10 | ragtriva.1 | |- ( ph -> <" A B A "> e. ( raG ` G ) ) |
|
| 11 | 1 2 3 4 5 6 8 7 9 | ragtrivb | |- ( ph -> <" B A A "> e. ( raG ` G ) ) |
| 12 | 1 2 3 4 5 6 8 7 7 11 | ragcom | |- ( ph -> <" A A B "> e. ( raG ` G ) ) |
| 13 | 1 2 3 4 5 6 7 7 8 12 10 | ragflat | |- ( ph -> A = B ) |