Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqd.a | |- F/_ x A |
|
| raleqd.b | |- F/_ x B |
||
| raleqd.e | |- ( ph -> A = B ) |
||
| Assertion | raleqd | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqd.a | |- F/_ x A |
|
| 2 | raleqd.b | |- F/_ x B |
|
| 3 | raleqd.e | |- ( ph -> A = B ) |
|
| 4 | 1 2 | raleqf | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| 5 | 3 4 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |