Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralrnmpt3.1 | |- F/ x ph |
|
| ralrnmpt3.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| ralrnmpt3.3 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | ralrnmpt3 | |- ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrnmpt3.1 | |- F/ x ph |
|
| 2 | ralrnmpt3.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 3 | ralrnmpt3.3 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 4 | 1 2 | ralrimia | |- ( ph -> A. x e. A B e. V ) |
| 5 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 6 | 5 3 | ralrnmptw | |- ( A. x e. A B e. V -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |
| 7 | 4 6 | syl | |- ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |