Metamath Proof Explorer


Theorem rdgsucmpt

Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by Mario Carneiro, 9-Sep-2013)

Ref Expression
Hypotheses rdgsucmpt.1
|- F = rec ( ( x e. _V |-> C ) , A )
rdgsucmpt.2
|- ( x = ( F ` B ) -> C = D )
Assertion rdgsucmpt
|- ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D )

Proof

Step Hyp Ref Expression
1 rdgsucmpt.1
 |-  F = rec ( ( x e. _V |-> C ) , A )
2 rdgsucmpt.2
 |-  ( x = ( F ` B ) -> C = D )
3 nfcv
 |-  F/_ x A
4 nfcv
 |-  F/_ x B
5 nfcv
 |-  F/_ x D
6 3 4 5 1 2 rdgsucmptf
 |-  ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D )