Metamath Proof Explorer


Theorem recni

Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995)

Ref Expression
Hypothesis recni.1
|- A e. RR
Assertion recni
|- A e. CC

Proof

Step Hyp Ref Expression
1 recni.1
 |-  A e. RR
2 ax-resscn
 |-  RR C_ CC
3 2 1 sselii
 |-  A e. CC