Metamath Proof Explorer


Theorem reldmlan

Description: The domain of Lan is a relation. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Assertion reldmlan
|- Rel dom Lan

Proof

Step Hyp Ref Expression
1 df-lan
 |-  Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) )
2 1 reldmmpo
 |-  Rel dom Lan