Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmlmhm | |- Rel dom LMHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmhm | |- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
|
| 2 | 1 | reldmmpo | |- Rel dom LMHom |