Metamath Proof Explorer


Theorem reldmlmhm

Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmlmhm
|- Rel dom LMHom

Proof

Step Hyp Ref Expression
1 df-lmhm
 |-  LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } )
2 1 reldmmpo
 |-  Rel dom LMHom