Metamath Proof Explorer


Theorem relopabv

Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 and ax-12 , see relopab . (Contributed by SN, 8-Sep-2024)

Ref Expression
Assertion relopabv
|- Rel { <. x , y >. | ph }

Proof

Step Hyp Ref Expression
1 eqid
 |-  { <. x , y >. | ph } = { <. x , y >. | ph }
2 1 relopabiv
 |-  Rel { <. x , y >. | ph }