Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relsn.1 | |- A e. _V |
|
relsnop.2 | |- B e. _V |
||
Assertion | relsnop | |- Rel { <. A , B >. } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | |- A e. _V |
|
2 | relsnop.2 | |- B e. _V |
|
3 | relsnopg | |- ( ( A e. _V /\ B e. _V ) -> Rel { <. A , B >. } ) |
|
4 | 1 2 3 | mp2an | |- Rel { <. A , B >. } |