Description: The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | remet | |- D e. ( Met ` RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | metres2 | |- ( ( ( abs o. - ) e. ( Met ` CC ) /\ RR C_ CC ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) ) |
|
| 5 | 2 3 4 | mp2an | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 6 | 1 5 | eqeltri | |- D e. ( Met ` RR ) |