Metamath Proof Explorer


Theorem remet

Description: The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007)

Ref Expression
Hypothesis remet.1
|- D = ( ( abs o. - ) |` ( RR X. RR ) )
Assertion remet
|- D e. ( Met ` RR )

Proof

Step Hyp Ref Expression
1 remet.1
 |-  D = ( ( abs o. - ) |` ( RR X. RR ) )
2 cnmet
 |-  ( abs o. - ) e. ( Met ` CC )
3 ax-resscn
 |-  RR C_ CC
4 metres2
 |-  ( ( ( abs o. - ) e. ( Met ` CC ) /\ RR C_ CC ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) )
5 2 3 4 mp2an
 |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR )
6 1 5 eqeltri
 |-  D e. ( Met ` RR )