Metamath Proof Explorer


Theorem repsf

Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsf
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( S e. V /\ x e. ( 0 ..^ N ) ) -> S e. V )
2 1 ralrimiva
 |-  ( S e. V -> A. x e. ( 0 ..^ N ) S e. V )
3 2 adantr
 |-  ( ( S e. V /\ N e. NN0 ) -> A. x e. ( 0 ..^ N ) S e. V )
4 eqid
 |-  ( x e. ( 0 ..^ N ) |-> S ) = ( x e. ( 0 ..^ N ) |-> S )
5 4 fmpt
 |-  ( A. x e. ( 0 ..^ N ) S e. V <-> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V )
6 3 5 sylib
 |-  ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V )
7 reps
 |-  ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) )
8 7 feq1d
 |-  ( ( S e. V /\ N e. NN0 ) -> ( ( S repeatS N ) : ( 0 ..^ N ) --> V <-> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V ) )
9 6 8 mpbird
 |-  ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V )