Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rescnvcnv | |- ( `' `' A |` B ) = ( A |` B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 | |- `' `' A = ( A |` _V ) |
|
2 | 1 | reseq1i | |- ( `' `' A |` B ) = ( ( A |` _V ) |` B ) |
3 | resres | |- ( ( A |` _V ) |` B ) = ( A |` ( _V i^i B ) ) |
|
4 | ssv | |- B C_ _V |
|
5 | sseqin2 | |- ( B C_ _V <-> ( _V i^i B ) = B ) |
|
6 | 4 5 | mpbi | |- ( _V i^i B ) = B |
7 | 6 | reseq2i | |- ( A |` ( _V i^i B ) ) = ( A |` B ) |
8 | 2 3 7 | 3eqtri | |- ( `' `' A |` B ) = ( A |` B ) |