Description: The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resssca.1 | |- H = ( G |`s A ) |
|
| ressip.2 | |- ., = ( .i ` G ) |
||
| Assertion | ressip | |- ( A e. V -> ., = ( .i ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resssca.1 | |- H = ( G |`s A ) |
|
| 2 | ressip.2 | |- ., = ( .i ` G ) |
|
| 3 | ipid | |- .i = Slot ( .i ` ndx ) |
|
| 4 | ipndxnbasendx | |- ( .i ` ndx ) =/= ( Base ` ndx ) |
|
| 5 | 1 2 3 4 | resseqnbas | |- ( A e. V -> ., = ( .i ` H ) ) |